A step by step guide to implementing latest concepts of Machine Learning into your trading strategy.

course 1### Regression

#### Section 1: Intro to Data Generation

#### Section 2: Data Pre-Processing

#### Section 3: Regression

#### Section 4: Bias and Variance

#### Section 5: Applying the Prediction

Learn about SCIKIT library and how to import it along with other libraries and data. Learn to create important indicators for the algorithm.

Learn about Hyper-parameters and Cross-validation for data pre-processing. Learn to create datasets, standardization and how to handle missing data. Learn to train and test your data.

Learn Regression in detail. Learn about errors and residuals in a regression model and how to predict them. Understand the Cost Function and Gradient Descent algorithm to minimize the cost function. Finally, learn about Multivariate Linear Regression and code with respect to linear regression.

Learn the concept of predicting error and how to identify these errors in any Machine Learning algorithm. Learn about underfitting and overfitting the data and ways to get a good fit. Understand the concept of Regularization using lambda parameter.

Learn how to modify the predictions made by the regression to account for market conditions. Learn how to get actual market high and low predictions from raw predictions.

course 2### Classification and SVM

#### Section 1: Introduction

#### Section 2: Binary Classification

#### Section 3: Multiclass Classification

#### Section 4: Support Vector Machine

#### Section 5: Prediction and Strategy

Learn the concept of classification and how to map input into a discrete category. Learn four types of classifier algorithms, which are K-Nearest Neighbor, Random Forest, Artificial Neural Network, and Naïve Bayes Classification. Learn various indicators such as RSI, SMA, Correlation co-efficient, Parabolic SAR and Average directional index.

Learn the concept of Binary Classification to predict the market direction. Learn the mathematical functions like Sigmoid and hyperbolic tangent to construct a binary classifier. Learn how to implement binary classification in financial market to predict market movement.

Understand the concept of Multiclass classification and how it is different from binary classification. Learn to classify datasets into more than one class using ‘One vs All’ algorithm. Learn how to categorize the data based on numeric encoding of categories followed by an explanation on ‘one hot encoding’. Learn the probability function and performance measures in ML and working of ‘Softmax’ function.

Learn the concept of Hyperplane, Support Vector, and Margin. Learn to how to choose the best hyperplane by maximizing the margin and the mathematics behind it. Learn about classification of non-linear data using kernel and understand different parameters such as C & Gamma and their effects on SVM algorithm.

Learn to build your own trading strategy based on the concepts learned earlier. Learn to properly import libraries, data and create necessary indicators. Learn to compare the strategy’s performance with market data. Learn to implement/modify the given strategy.

Save 20% on the bundle. Click below to see the price!

Enroll NowAccess

Customized Video Experience

Jupyter Notebook Documents

Machine Driven Interactive Exercises

"Very useful and easy to follow, not only learn to code but also it’s a clear explanation about the maths under the hood for better understanding"

"An excellent introduction of machine learning in trading! If one is new to the field of trading and would like to check how beautifully analytical settings like ML works, please consider spending some time on this lovely interactive course!"

Save 20% on the bundle. Click below to see the price!

Enroll Now